Trigonometry All Formulas PDF Download

Trigonometry All Formulas PDF Download, Trigonometry holds an essential place from the point of view of SSC, NDA, CDS, and other competitive exams. Class 10 Trigonometry Formula, Trigonometric Formulas For Class 12 Pdf, If we analyze the question papers of SSC and other competitive exams of the last three or four years, Class 11 Trigonometry Formulas, then we know that trigonometry has three to four questions in SSC (10+2 level, graduation level, and CPO) and other competitive exams. Are being asked.

Trigonometry All Formulas PDF – In today’s Content, we will know all the Trigonometry or Trigonometry formulas  (All Trigonometry formulas in Hindi & English). Questions based on the procedure of trigonometry function are often asked in board exams or competitive exams. Basic and tricky questions based on trigonometry formulas are requested in 9th class, 10th class, 11th class, and 12th class exams.

Trigonometry Formula

Table of Trigonometry Functions (chart)

Signal 30 ° = π / 6 45 ° = π / 4 60 ° = π / 3 90 ° = π / 2
Sinθ 0 ½ 1/√2 √3/2 1
Cos θ 1 √3/2 1/√2 ½ 0
Tanθ 0 1/√3 1 √3 undefined
Cotθ undefined √3 1 1/√3 0
Secθ 1 2/√3 √2 2 undefined
Harvest undefined 2 √2 2/√3 1
Trigonometry All Formulas PDF
Trigonometry Formulas For Class 10 PDF
All Formulas Of Trigonometry Class 10
All Formulas Of Trigonometry Class 11
Trigonometry Formulas For Class 11 PDF
Trigonometry All Formula Class 10
Class 11 Maths Trigonometry Formulas
Class 11 Trigonometry All Formulas

Basic Formulas of Trigonometry

  1. sinA = perpendicular hypotenuse
  2. cosA = base hypotenuse
  3. tanA = perpendicular base
  4. cotA = base perpendicular
  5. secA = hypotenuse base
  6. cosecA = hypotenuse
  7. sinA =1 cosecA
  8. cosA =1 secA
  9. tanA =1 cotA
  10. cotA =1 tanA
  11. secA =1 cosA
  12. cosecA =1 sinA
  13. tanA =sinA cosA
  14. cotA =cosA sinA
  15. sinA x cosecA = 1
  16. cosA x secA = 1
  17. tanA x cotA = 1
  18. sin 2 A + cos 2 A = 1
  19.  sec 2 A – tan 2 A = 1
  20.  cosec 2 A – cot 2 A = 1

Formulas for Measurement of Angles in Trigonometry

  1. radian measurement = π 180x degree measurement
  2. degree measurement = 180 πx radian measurement

Fundamentals of Trigonometry

  1. sin2x + cos2x = 1
  2. 1 + tan2x = sec2
  3. 1 + cot2x = cosec2
  4. cos (2πn + θ) = cosθ 
  5. sin (2πn + θ) = sinθ 
  6. sin (-θ) = -sinθ 
  7. cos (-θ) = cosθ

Trigonometry ratio of the sum of two angles

  1. sin (A + B) = sinA.cosB + cosA.sinB
  2. cos (A + B) = cosA.cosB – sinA.sinB
  3. tan (A + B) = tanA + tanB 1 – tanA.tanB
  4. cot (A + B) = cotA.cotB – 1 cotB + cotA

More Trigonometry Formula

(A) (1) sin (π 2+ A) = cosA (2) cos (π 2+ A) = -sinA (3) tan (π 2+ A) = -cotA (4) cot (π 2+ A) = -tanA (5) sec (π 2+ A) = -cosecA (6) cosec (π 2+ A) = secA

(B) (1) sin (π + A) = -sinA (2) cos (π + A) = -cosA (3) tan (π + A) = tanA (4) cot (π + A) = cotA ( 5) sec (π + A) = -secA (6) cosec (π + A) = -cosecA

(C) (1) sin (3π 2+ A) = -cosA (2) cos (3π 2+ A) = sinA (3) tan (3π 2+ A) = -cotA (4) cot (3π 2+ A) = -tanA (5) sec (3π 2+ A) = cosecA (6) cosec (3π 2+ A) = -secA

(D) (1) sin (2π + A) = sinA (2) cos (2π + A) = cosA (3) tan (2π + A) = tanA (4) cot (2π + A) = cotA (5) sec (2π + A) = secA (6) cosec (2π + A) = cosecA

Trigonometry ratio of difference of two angles

(1) sin (A – B) = sinA.cosB – cosA.sinB

(2) cos (A – B) = cosA.cosB + sinA.sinB

(3) tan (A – B) = tanA – tanB 1 + tanA.tanB (4) cot (A – B) = cotA.cotB + 1 cotB – cotA

More Trigonometry Formula

(A) (1) sin (π 2- A) = cosA (2) cos (π 2- A) = sinA (3) tan (π 2- A) = cotA (4) cot (π 2- A) = tanA (5) sec (π 2- A) = cosecA (6) cosec (π 2- A) = secA

(B) (1) sin (π – A) = sinA (2) cos (π – A) = -cosA (3) tan (π – A) = -tanA (4) cot (π – A) = -cotA (5) sec (π – A) = -secA (6) cosec (π – A) = -cosecA

(C) (1) sin (3π 2- A) = -cosA (2) cos (3π 2- A) = -sinA (3) tan (3π 2- A) = cotA (4) cot (3π 2- A) = tanA (5) sec (3π 2- A) = -cosecA (6) cosec (3π 2- A) = -secA

(D) (1) sin (2π – A) = -sinA (2) cos (2π – A) = cosA (3) tan (2π – A) = -tanA (4) cot (2π – A) = -cotA (5) sec (2π – A) = secA (6) cosec (2π – A) = -cosecA

Two Formulas of Trigonometry

(1) sin(A + B) sin(A – B) = sin2A – sin2

(2) cos(A + B) cos(A – B) = cos2A – sin2B

Expressing Trigonometry Ratios of Angle 2A in Terms of Angle A

(1) sin2A = 2sinA.cosB

(2) cos2A = cos 2 A – sin 2 A = 2cos 2 A – 1 = 1 – 2 sin 2 A

(3) tan2A = 2tanA 1 – tan 2 A

(4) sin2A = 2tanA 1 + tan 2 A

(5) cos2A = 1 – tan 2 A 1 + tan 2 A

Expressing Trigonometry Ratios of Angle 3A in Terms of Angle A

(1) sin3A = 3sinA – 4sin 3A

(2) cos3A = 4cos 3A – 3cosA

(3) tan3A = 3tanA – tan 3 A 1 – 3tan 2 A

sum or difference of product

(1) 2sinA.cosB = sin (A + B) + sin (A – B)

(2) 2cosA.sinB = sin (A + B) – sin (A – B)

(3) 2cosA.cosB = cos (A + B) + cos (A – B)

(4) 2sinA.sinB = cos (A – B) – cos (A + B)

Conversion of sum and difference product

(1) sinC + sinD = 2 sinC + D 2cosC – D 2

(2) sinC – sinD = 2 cosC + D 2sinC – D 2

(3) cosC + cosD = 2 cosC + D 2cosC – D 2

(4) cosC – cosD = 2 sinC + D 2sinD – C 2

General Solution of Simple Trigonometry Equations

(1) If sinθ = 0, then its general solution will be = nπ, where n is zero or any positive or negative integer, that is, n.

(2) If cosθ = 0, its general solution will be = (2n + 1)π/2, where n is zero or any positive or negative integer, that is, n.

(3) If tanθ = 0, then the general solution will be = nπ, where n is zero or any positive or negative integer, that is, n.

 Values ​​of the functions for (180 0 + )   Values ​​of the functions for (270 0 – ) 
Sin (180 0  + θ) = – Sin θCos (180 0  + θ) = – Cos θTan (180 0  + θ) = + Tan θSec (180 0  + θ) = – Sec θCot (180 0  + θ) = + Cot θCosec (180 0 + θ) = -Cosec θ Sin (270 0  – θ) = – Cos θCos (270 0  – θ) = – Sin θTan (270 0  – θ) = + Cot θSec (270 0  – θ) = – Cosec θCot (270 0  – θ) = + Tan θCosec (270 0 -θ) = -Sec θ

General Solution of Trigonometry Equations

(1) If sinθ = sinα then its comprehensive solution = nπ + (-1) n  α ∀ n ∈ I

(2) If cosθ = cosα then its comprehensive solution = 2nπ + α, ∀ n ∈ I

(3) if tanθ = tanα then its broad solution = nπ + α, n ∈ I

Trigonometry All Formulas PDF Download Information

Trigonometry All Formulas
Trigonometry All Formulas
Book: Trigonometry All Formulas PDF Book
 Subjects: Maths
Language: English, and Hindi
Total Pages: 10 Pages
File Size: 546 KB
Format: PDF (Scanned Copy)
Download Source: Google Drive

Download Trigonometry All Formulas PDF (class 10, class 11, and class 12)

Trigonometry All Formulas PDF Download
Trigonometry All Formulas PDF Download

DOWNLOADTrigonometry All Formulas PDF (class 10, class 11, and class 12) Free Latest

Final Thoughts

If you have any questions under Trigonometry All Formulas PDF Download, ask us by commenting below. Our team will answer your question soon; please share this article with anyone else with the help of the share button.

www.studyspot.com  is not the original publisher of this Book/Material on the Internet. This e-book/Material/Notes has been collected from other sources of the Internet.

 

Leave a Comment